Observational Evaluation of Mobile Source Emissions

Gregory Frost^{1,2}, Stuart McKeen^{1,2}, Michael Trainer¹, Ken Aikin^{1,2}, Jeff Peischl^{1,2}, Thomas Ryerson¹, John Holloway^{1,2}, Gabrielle Petron^{1,2}, Pieter Tans¹, Robert Harley³

Ambient ratios of NO_x, CO, and CO₂ sampled by aircraft in Houston and Dallas during the 2000 and 2006 Texas Air Quality Study (TexAQS) are compared with each other and with observations at a Houston highway tunnel. From these measurements we estimate 2000 and 2006 emissions for Houston and Dallas mobile sources. The observations demonstrate time-of-day variations in the relative contributions from gasoline and diesel combustion which are consistent with known traffic patterns. We incorporate CO₂ emissions derived from the Federal Highway Administration's motor vehicle fuel use statistics into the EPA's National Emission Inventory (NEI), resulting in an emission data set for NO_x, CO, and CO₂ with 4-km spatial and hourly temporal resolution. Comparison of the emission ratios derived from the TexAQS observations with this inventory allows a direct evaluation of the NEI mobile source NO_x and CO emissions.

¹NOAA Earth System Research Laboratory, Boulder, CO

²CIRES, University of Colorado, Boulder, CO

³University of California, Berkeley, CA